Nuclear Energy
Aug 10, 2023
Nuclear Energy
025 - Nuclear Energy In this video Paul Andersen explains how nuclear energy is released during fission of radioactive uranium. Light water reactors, nuclear waste, and nuclear accidents are also discussed along with the future of nuclear energy. Do you speak another language? Help me translate my videos:http://www.bozemanscience.com/transla … Music Attribution Intro Title: I4dsong_loop_main.wav Artist: CosmicD Link to sound: http://www.freesound.org/people/Cosmi … Creative Commons Atribution License Outro Title: String Theory Artist: Herman Jollyhttp://sunsetvalley.bandcamp.com/trac … All of the images are licensed under creative commons and public domain licensing: Delphi234. (2014). English: History of nuclear power in the world. Data is from IAEA and EIA. Retrieved from https://commons.wikimedia.org/wiki/Fi … DOE. ([object HTMLTableCellElement]). English: Spent fuel pool at a nuclear power plant. http://www.ocrwm.doe.gov/curriculum/u … Retrieved from https://commons.wikimedia.org/wiki/Fi … File:Chernobyl Disaster.jpg. (2014, April 30). In Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/w/index.php ?… Globe, D. (2011). English: The Fukushima I Nuclear Power Plant after the 2011 Tōhoku earthquake and tsunami. Reactor 1 to 4 from right to left. Retrieved from https://commons.wikimedia.org/wiki/Fi … lightningBy ZaWertun. (n.d.). Retrieved from https://openclipart.org/detail/190134 … Spoon, S. (2011). English: en:International Nuclear Event Scale. Retrieved from https://commons.wikimedia.org/wiki/Fi … UK, C. R. (2014). Diagram showing a lobectomy of the thyroid gland. Retrieved from https://commons.wikimedia.org/wiki/Fi … Z22. (2014). English: The unit 2 of Three Mile Island Nuclear Generating Station closed since the accident in 1979. The cooling towers on the left. Retrieved from https://commons.wikimedia.org/wiki/Fi …
Content
4.1 -> Hi. It’s Mr. Andersen and this AP environmental
sciences video 25. It is on nuclear energy.
9.24 -> You are probably familiar with the Richter
Scale. It is a log scale by which we measure
13.08 -> the size of earthquakes. But you are not familiar
with the INE Scale or the International Nuclear
17.96 -> Event Scale. It is also a log scale and we
use it to measure the size of nuclear accidents.
23.339 -> We have only hit 7 twice. First time was in
1986 in Chernobyl. We had a collapse and a
28.419 -> meltdown of the reactor. Thirty-one people
died from exposure to radiation. In 2011,
34.57 -> in Fukushima, we also hit a level 7. We had
there of the reactors meltdown after an earthquake
39.66 -> and a tsunami. In the US the highest we have
ever gone is a level 5, at Three Mile Island.
44.85 -> It released a little bit of radioactive material
into the surrounding area. But it scared people.
50.05 -> These accidents scare people and radiation
scares people because we cannot see it. And
54.78 -> so the amount of energy we are getting from
nuclear reactors has remained static for decades.
59.37 -> But it is starting to be revisited again.
And the reason why is there is also something
63.81 -> in the environment that is scary and it is
also invisible. And that is carbon dioxide.
68.619 -> If we look at the amount of carbon dioxide
being produced by nuclear power plants it
72.2 -> is on the level of the same as wind generation
or hydro power. If we compare that to gas
77.719 -> and oil and coal there is way more carbon
dioxide being created. So new technology and
83.859 -> a decrease in carbon emissions could see a
resurgence of nuclear energy. Where is the
88.21 -> energy coming from? It comes from the fission
of radioactive material, generally Uranium
93.09 -> 235. So as it decays it breaks down into two
fragments, barium and krypton. And as it does
99.539 -> that it gives off energy and it gives off
neutrons that can trigger more fission in
104.469 -> more radioactive 235. So the way this is controlled,
unlike in a weapon, it is controlled in a
110.49 -> reactor. Most of the reactors in play right
now are light water reactors or normal water
114.889 -> reactors. What you do is you put fuel rods
inside it and as they decay produces a little
121.259 -> bit of energy and that energy inside the water
heats it up and we can use it to generate
125.259 -> steam and then generate electricity. Now when
it melts down this goes out of control and
131.23 -> we get a release of that radiation into the
environment. And so by having it in water
135.59 -> we can contain some of that energy. And we
can also use control rods. These are actually
140.18 -> going to take in some of those neutrons and
by lowering them between the fuel rods we
144.62 -> can slow down the reactor. Now the disadvantages
are pretty apparent. Nuclear waste is going
149.89 -> to be created. It can be around of thousands
and thousands of years, so we have to keep
153.79 -> track of that. Each of the radioactive materials
have a different half life but it is going
157.84 -> to be on the order of thousands of years.
And also we have these accidents where we
161.53 -> can have explosions, malfunctions and it releases
that radiation into the environment. It can
166.73 -> cause things like thyroid cancer. Why do we
still have it? Well the advantage is that
171.26 -> it creates a huge amount of energy and it
can do that without increasing the amount
175.43 -> of carbon emissions in the environment. So
if we look at uranium 235, now we are looking
180.26 -> just at the nucleus, and so we are looking
at the protons and the neutrons. And so if
184.04 -> we were to hit one of those uranium atoms
with a neutron, what it will do is it will
188.63 -> break in half. It breaks apart into these
2 fragments. And as it does that it releases
193.07 -> a certain amount of energy. You can see it
is also liberating 3 of these neutrons. And
197.87 -> each of those have the potential to hit another
uranium 235 and we can break it down. So it
203.76 -> is not an out of control chain reaction like
this that we might see in a nuclear bomb,
209.11 -> but it goes slow over time. And so if we look
at what those fuel rods are like, most of
214.58 -> the uranium is actually going to be uranium
238. A few of it is uranium 235. And so as
220.43 -> those neutrons are given off, by having it
in water we can absorb some of that energy
225.48 -> and we can control that radiation. And also
we can lower these control rods. They absorb
231.17 -> the neutrons and so we can slow it down. So
if we look at a typical light-water reactor,
235.16 -> we are going to have the fuel rods and the
control rods in the core. We are then going
238.99 -> to heat up a fluid. And that fluid is going
to be in a closed system. So as it moves through
243.35 -> these pipes it returns back where it was.
But it is bringing with it a huge amount of
247.819 -> heat. Now that heat moves into a separate
loop. And so in this loop what we are doing
251.9 -> is heating up the water. It is forming steam
up at the top and then that steam is moving
256.87 -> through a generator. So we are generating
electricity. And then finally we still have
261.32 -> a lot of heat right here. Before we pump it
back in we have to get rid of some of that
265.69 -> heat. And so we are going to do that by pumping
the water in another loop into a cooling pond.
271.3 -> And so as along as we have energy contained
within those fuel rods, we can generate electricity.
277.25 -> But what happens when we decay too much of
that uranium 235? Now it becomes waste. It
283.03 -> is still radioactive, but it is not generating
enough electricity for the plant to go. And
288.17 -> so now we have generated waste. So that is
one form of nuclear waste. But we are also
292.22 -> generating a little bit of heat over here
into the environment as well. And so how do
296.94 -> we deal with that waste? Well how do we deal
with those fuel rods? We are going to put
300.99 -> them in a pool. And as we put them in a pool
we are going to absorb some of that energy
304.85 -> here. But eventually we are going to have
to put it in some kind of a container and
308.27 -> a lot of these are on these concrete slabs.
And we have that nuclear waste contained inside
313.07 -> there. There is no real long range plan of
what we are going to do with this nuclear
316.71 -> waste and it is going to be a problem that
we will have to deal with generations down
320.07 -> the line. If we look at how long this could
occur you have to understand what a half-life
324.4 -> is. A half-life is going to be the amount
of time it takes for half of the material
329.43 -> to decay or to break apart. And so if we look
at time 0, let’s say the half-life is one
335.97 -> year, at time 0 we would have 100 percent
of the radioactive material. At time 1 we
341.77 -> would 50 percent of it. In other words half
of it would have decayed. In another year
346.41 -> it would be half of that and a half of that
and a half of that and a half of that. And
350.97 -> so in an AP environmental science class you
should be able to calculate the half-life.
355.87 -> And let me give you a problem. Let’s say
radium has a half-life of 1500 years. How
360.71 -> long will it take for 250 kilograms of the
radium to decay down to less then 10 kilograms.
366.889 -> And so we are saying the mass of radium at
the beginning is 250 kilograms at time 0.
372.28 -> And so in 1 half-life, in other words in 1500
years we would have decayed half of it down
377.76 -> to 125. In another 1500 years we would be
down to 62.5. And you can just keep doing
383.1 -> this. And you can see at 7500 years we are
less than 10 kilograms left. You can see a
388.35 -> lot of that is still going to be radioactive.
Now what happens in accidents, something happens
393.49 -> where we are not able to contain this core.
And so if we look at Chernobyl, they were
397.919 -> testing the reactor and it got out of control.
It heated. We are having a melting or an explosion
404.05 -> that actually collapsed the roof. It released
a lot of radiation. If we are looking at Fukushima,
408.75 -> it is like three levels of protection that
failed. We have an earthquake but we also
413.87 -> have this giant tsunami. And if we are looking
at Three Mile Island it was a problem with
417.919 -> a valve. But also a problem with user error
as well. And so all of these, for the most
423.11 -> part, are human error. Either we had a mistake
at the reactor or had a mistake in the design.
428.93 -> And what it does is it releases some of this
radioactive material into the environment.
432.78 -> So for example radioactive iodine can cause
thyroid cancer. So we eat it in our food.
438.12 -> It causes cancer years down the line. And
we are going to see this wherever there is
442.21 -> a nuclear accident, we are going to have increases
in thyroid cancer after that. So if we look
446.919 -> at these accidents, so this is Three Mile
Island, here is Chernobyl. So we had the heyday
452.09 -> of nuclear reactor creation during this oil
crisis. But then after these accidents you
457.88 -> can see the amount of reactors we have has
remained static. And you can say even though
462.21 -> we could produce this amount of energy, we
are producing less of that. And the reason
466.41 -> has to do with this fear of radiation and
the fear of accidents as well. And so what
471.31 -> does the future hold for nuclear power? Well
there are going to be increases in new technology.
476.16 -> Thorium reactors are going to be working much
better than uranium light-water reactors.
480.52 -> And we can have these third generation reactors
where we can actually reuse some of that waste.
486.18 -> And then finally we have to reduce carbon
emissions. And nuclear energy is going to
490.02 -> be part of that discussion. So could you pause
the video and fill-in the blanks? Let me do
494.419 -> that for you. Nuclear energy is the fission
of something like uranium 235. We break it
499.259 -> apart into fragments. We also get energy in
some neutrons that can cause fission in other
503.46 -> atoms. We have the fuel rods. That is where
the radioactive material is. But we also have
508.449 -> these control rods. Disadvantages, nuclear
waste. It takes a long time due to the half-life
514.11 -> of these radioactive materials for the waste
to go away. We can have accidents that increase
518.57 -> the amount of cancer, thyroid cancer is an
example of that. But the advantages again,
523.56 -> nuclear power can help us reduce the amount
of carbon dioxide in the environment. Reduce
527.66 -> global warming. And that is why it is being
revisited. And I hope that was helpful.
Source: https://www.youtube.com/watch?v=ZNla6s68AEE